EMC China Lab

ISO 10993-17:2023 Testing Laboratory

Views :
Update time : 2024-11-28

The release of the updated ISO 10993-17:2023 standard marks a shift in medical device biocompatibility toward emphasizing the toxicological risk assessment (TRA) process. The new standard specifies that after completing material chemical characterization of medical devices (ISO 10993-18), a toxicological risk assessment should be conducted following the guidelines in ISO 10993-17 to determine the biological safety of the device.

 

Additionally, compared to ISO 10993-17:2002, the updated standard introduces several key concepts, including TSL, EEDmax, and MoS.

 

Toxicological Assessment Process

The toxicological assessment of medical devices is a systematic process designed to ensure the safety of devices for human use. It primarily involves three core steps:

 

1. Hazard Identification  

2. Exposure Estimation  

3. Risk Evaluation

 ISO 10993-17:2023 Testing Laboratory(图1)

Each step incorporates specific technical and computational methods. This entire process requires interdisciplinary collaboration, bringing together chemists, toxicologists, biomedical engineers, and clinical experts. Through this process, the safety of medical devices can be ensured, meeting relevant regulatory requirements.

 

New Key Concepts

TSL (Toxicological Screening Limit)  

TSL is the highest cumulative exposure dose for a specific substance within a defined period, set to protect individuals from health hazards.  

 

According to ISO 10993-17, if the total quantity (TQ) of a compound extractable from a medical device within a given time frame is below the specified TSL, the exposure level can be considered toxicologically insignificant, and further toxicological risk assessment is typically unnecessary.

 

Applicable Scenarios for TSL:

1. Systemic toxicity (e.g., acute, subacute, chronic, subchronic toxicity)

2. Genotoxicity  

3. Carcinogenicity  

4. Reproductive and developmental toxicity  

 

Non-Applicable Scenarios for TSL:

1. Irritation-related harm  

2. Impurities in the "cohort of concern"  

3. Unknown compounds  

4. Prolonged exposure to devices intended for infants under six months  

5. Volatile compounds in inhalable medical devices  

 

EEDmax (Worst Case Estimated Exposure Dose)  

EEDmax refers to the maximum exposure dose under specific intended clinical use scenarios.  

 

- For components with short-term contact and available drug release/dissolution kinetics, EEDmax should be calculated based on this information.  

- For long-term or persistent contact, or for components without drug release/dissolution kinetics, EEDmax can be calculated based on the total or extractable amount of device components.  

 

Refer to ISO 10993-17:2023 for specific calculation details.

 

MoS (Margin of Safety)  

MoS represents the ratio between the toxicological threshold of concern (TI or TCL) and the estimated exposure dose (EEDmax).  

 

When the MoS value for a substance is greater than 1, the exposure level is considered to pose no significant health risks, and the toxicological risk is deemed acceptable.

 

JJR Laboratory in China Offers ISO 10993 biocompatibility testing

Feel free to contact us for consultation on iso 10993 testing services!


Email:hello@jjrlab.com


Leave Your Message


Write your message here and send it to us


Related News
Read More >>
What Does EN 300 220 Compliance Test? What Does EN 300 220 Compliance Test?
07 .04.2025
EN 300 220 ensures SRD spectrum compliance (25–1000 MHz). JJR Laboratory provides EN 300 220 and CE ...
Introduction to EN 300 220 Standard Introduction to EN 300 220 Standard
07 .04.2025
EN 300 220 covers EMC and spectrum requirements for SRDs (25–1000 MHz). JJR Lab offers EN 300 220 te...
Singapore IMDA Label Requirements Singapore IMDA Label Requirements
07 .04.2025
Singapore IMDA label requirements: devices need IMDA approval for sale/use. JJR Lab provides testing...
What is IMDA SDoC Certification? What is IMDA SDoC Certification?
07 .04.2025
IMDA SDoC certifies telecom gear for sale in SG via supplier’s conformity declaration. JJR Lab provi...
Singapore IMDA Regulations Singapore IMDA Regulations
07 .04.2025
Singapore IMDA regulations require wireless products to be registered for safety and EMC; JJR Lab pr...
16 CFR 1263 + UL 4200A + GCC Certificate 16 CFR 1263 + UL 4200A + GCC Certificate
07 .02.2025
16 CFR 1263 and UL 4200A mandate button battery safety testing, labeling, and GCC certification. JJR...
Japan METI Registration Guide Japan METI Registration Guide
07 .02.2025
To sell battery products on Amazon Japan, both PSE certification and METI registration are required....
Singapore Safety Mark (PSB) Certification Singapore Safety Mark (PSB) Certification
07 .02.2025
Singapore Safety Mark ensures product safety compliance. JJR Lab provides testing and certification ...

Leave Your Message