EMC China Lab

ISO 10993-17:2023 Testing Laboratory

Views :
Update time : 2024-11-28

The release of the updated ISO 10993-17:2023 standard marks a shift in medical device biocompatibility toward emphasizing the toxicological risk assessment (TRA) process. The new standard specifies that after completing material cheMICal characterization of medical devices (ISO 10993-18), a toxicological risk assessment shoULd be conducted following the guidelines in iso 10993-17 to determine the biological safety of the device.

 

Additionally, compaRED to ISO 10993-17:2002, the updated standard introduces several key concepts, including TSL, EEDmax, and MoS.

 

Toxicological Assessment Process

The toxicological assessment of medical devices is a systematic process designed to ensure the safety of devices for human use. It primarily involves three core steps:

 

1. Hazard Identification  

2. Exposure Estimation  

3. Risk Evaluation

 ISO 10993-17:2023 Testing Laboratory(图1)

Each step incorporates specific technical and computational methods. This entire process requires interdisciplinary collaboration, bringing together chemists, toxicologists, biomedical engineers, and clinical experts. Through this process, the safety of medical devices can be ensured, meeting relevant regulatory requirements.

 

New Key Concepts

TSL (Toxicological Screening Limit)  

TSL is the highest cumulative exposure dose for a specific substance within a defined period, set to protect individuals from health hazards.  

 

According to ISO 10993-17, if the total quantity (TQ) of a compound extractable from a medical device within a given time frame is below the specified TSL, the exposure level can be considered toxicologically insignificant, and further toxicological risk assessment is typically unnecessary.

 

Applicable Scenarios for TSL:

1. Systemic toxicity (e.g., acute, subacute, chronic, subchronic toxicity)

2. Genotoxicity  

3. Carcinogenicity  

4. Reproductive and developmental toxicity  

 

Non-Applicable Scenarios for TSL:

1. Irritation-related harm  

2. Impurities in the "cohort of concern"  

3. Unknown compounds  

4. Prolonged exposure to devices intended for infants under six months  

5. Volatile compounds in inhalable medical devices  

 

EEDmax (Worst Case Estimated Exposure Dose)  

EEDmax refers to the maximum exposure dose under specific intended clinical use scenarios.  

 

- For components with short-term contact and available drug release/dissolution kinetics, EEDmax should be calculated based on this information.  

- For long-term or persistent contact, or for components without drug release/dissolution kinetics, EEDmax can be calculated based on the total or extractable amount of device components.  

 

Refer to ISO 10993-17:2023 for specific calculation details.

 

MoS (Margin of Safety)  

MoS represents the ratio between the toxicological threshold of concern (TI or TCL) and the estimated exposure dose (EEDmax).  

 

When the MoS value for a substance is greater than 1, the exposure level is considered to pose no significant health risks, and the toxicological risk is deemed acceptable.

 

JJR Laboratory in China Offers ISO 10993 biocompatibility testing

Feel free to contact us for consultation on iso 10993 testing services!


Email:hello@jjrlab.com


Leave Your Message


Write your message here and send it to us


Related News
Read More >>
IEC 62471 Photobiological Safety of Lamps and Lamp IEC 62471 Photobiological Safety of Lamps and Lamp
02 .21.2026
IEC 62471 photobiological safety testing for LED lamps covers UV, blue light and IR risks, with risk...
New European Toy Standard EN 71-1:2026 New European Toy Standard EN 71-1:2026
02 .21.2026
EN 71-1:2026, the new European toy mechanical safety standard, updates testing requirements. JJR pro...
EN71 Series Standards Compliance February 13, 2026 EN71 Series Standards Compliance February 13, 2026
02 .21.2026
EN71 Compliance (Feb 13, 2026) — EU mandatory toy safety for children under 14. Updated EN71-2/4/5/7...
European Toy Safety Standard EN 71-20:2025 European Toy Safety Standard EN 71-20:2025
02 .20.2026
EN 71-20:2025 defines EU microbiological safety and preservation tests for toys with aqueous media; ...
EN 18031 Certification for Connected Devices on Am EN 18031 Certification for Connected Devices on Am
02 .20.2026
Amazon EU requires connected devices to meet EN 18031-1/2/3 cybersecurity standards; JJR lab provide...
Compliance Guide for Portable Batteries on Amazon Compliance Guide for Portable Batteries on Amazon
02 .20.2026
Amazon EU requires portable batteries to pass TIC audits by 15 Mar 2026 under EN/IEC 62368-1, IEC 62...
2026 EU SVHC Candidate List (253 Substances) 2026 EU SVHC Candidate List (253 Substances)
02 .15.2026
2026 EU SVHC Update: 253 substances confirmed by ECHA. REACH SVHC testing per EU standard; fees from...
LFGB Certification Cost and Timeline Guide LFGB Certification Cost and Timeline Guide
02 .15.2026
LFGB testing ensures food-contact safety under German standards. JJR Lab offers LFGB tests from $398...

Leave Your Message